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Mean-field theory of Boltzmann machine learning
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I present a mean-field theory for Boltzmann machine learning, derived by employing Thouless-Anderson-
Palmer free energy formalism to a full extent. Using the Plefka expansion an extended theory that takes
higher-order correction to mean-field free energy formalism into consideration is presented, from which the
mean-field approximation of general orders, along with the linear response correction, are derived by truncat-
ing the Plefka expansion up to desired orders. A theoretical foundation for an effective trick of using ‘‘diagonal
weights,’’ introduced by Kappen and Rodrı´guez, is also given. Because of the finite system size and a lack of
scaling assumptions on interaction coefficients, the truncated free energy formalism cannot provide an exact
description in the case of Boltzmann machines. Accuracies of mean-field approximations of several orders are
compared by computer simulations.@S1063-651X~98!05308-2#

PACS number~s!: 84.35.1i, 05.20.2y, 75.10.Nr, 87.10.1e
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I. INTRODUCTION

I present a mean-field theory for Boltzmann mach
learning, which is derived by employing Thouless-Anderso
Palmer~TAP! free energy formalism@1# to a full extent. A
mean-field approach to Boltzmann machine learning w
suggested by Peterson and Anderson@2#. However, mean-
field Boltzmann machine learning has drawn attent
mainly because of its practical efficiency. Some theoret
considerations have also been made@3#, but most of these are
based on so-called ‘‘naive’’ mean-field theory. Recent
Kappen and Rodrı´guez@4# ~KR hereafter! applied the linear
response theorem@5# to mean-field Boltzmann machin
learning. In this paper, I, extending their argument to inclu
higher-order terms, present a mean-field theory which
fully consistent with the TAP approach in spin glass theo

In the context of mean-field Boltzmann machine learnin
the TAP approach has been mentioned in a number of s
ies. Galland@6# used the TAP free energy in a rather heur
tic way. KR @4# also mentioned the TAP free energy, b
they did not utilize it in their study. Inclusion of the Onsag
reaction term was also suggested in Refs.@7, 8#. I believe this
to be the first consistent treatment of the TAP formali
within the framework of mean-field Boltzmann machin
learning.

The linear response theorem is also an important
which enables us to obtain information about correlatio
within mean-field theory. It has been successfully appli
for example, in analyzing, within mean-field theory, a s
chastic network model for correlation-based ‘‘dynamic
linking’’ of features @9#. I will show that treatment of the
linear response theorem within the framework based on
TAP formalism provides a quite natural and consistent ar
ment as to how it works.

KR @4# also suggested the effective heuristics of us
‘‘diagonal weights,’’ which was justified by the fact tha
these gave good results. I will also provide a theoreti
foundation of this ‘‘diagonal-weight trick,’’ on the basis o
the framework presented in this paper.
PRE 581063-651X/98/58~2!/2302~9!/$15.00
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II. BOLTZMANN MACHINE LEARNING

A Boltzmann machine withN units can be regarded as a
Ising spin system having spin variablessiP$21,1%, i
51,...,N, with interactionswi j between sitesi and j and
external fieldshi acting on sitesi as its parameters. Hamil
tonianH(s) determining energy for each spin configuratio
s5(s1 ,...,sN) is given by

H~s!52(
i

hisi2(̂
i j &

wi j sisj , ~1!

where the notation̂i j & means all distinct pairs. When value
of hi and wi j are given, a Boltzmann machine represent
Boltzmann-Gibbs distribution

p~s!5exp@2H~s!2c#

5expF(
i

hisi1(̂
i j &

wi j sisj2cG , ~2!

where 2c is the Helmholtz free energy. Here, and in th
sequel, I assume that the ‘‘temperature’’ is unity without lo
of generality. I will identify a Boltzmann machine and th
Boltzmann-Gibbs distribution represented by it, and use
pressions such as ‘‘a Boltzmann machinep(s). ’’ For sim-
plicity, in what follows I will argue the case without hidde
units, but extension of the following argument to the ca
with hidden units is straightforward.

The objective of Boltzmann machine learning can
stated in terms of spin systems as follows: Determine ex
nal fieldshi and interactionswi j , by knowing average mag
netizationŝ si&p and correlationŝsisj&p for spins at thermal
equilibrium. These averages are taken with respect to
Boltzmann-Gibbs distributionp @Eq. ~2!#. This can be seen
as a ‘‘backward’’ problem, and the corresponding ‘‘fo
ward’’ problem, that is to estimatêsi&p and ^sisj&p by
knowing hi andwi j , can be solved by simulating the phys
cal process~the Gibbs sampler@10#!. Boltzmann machine
learning @11# solves the backward problem by utilizing th
forward problem via error feedback: Letq(s) be a target
2302 © 1998 The American Physical Society
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Boltzmann machineq(s) with parametershi and wi j . One
knows the averageŝsi&q and ^sisj&q with respect toq(s),
and wants to estimate the parametershi andwi j from these
averages. Boltzmann machine learning updates current
mates of the valueshi andwi j by the following learning rule:

Dhi5«~^si&q2^si&p!, Dwi j 5«~^sisj&q2^sisj&p!, ~3!

where the averageŝ&p are to be evaluated from the curre
estimates ofhi and wi j by solving the forward problem. I
executes the gradient descent of Kullback diverge
D(piq)5(sq(s)ln„q(s)/p(s)… between the target distribu
tion q(s) and the Boltzmann machinep(s), whose param-
eters are equal to the current estimates ofhi andwi j . If there
are no hidden units, this learning rule provides the optim
Boltzmann machine which best approximates the target
tribution @12#. If there are hidden units, it still provides
locally optimal one, but it does not assure the global op
mality.

III. MEAN-FIELD THEORY

A. Exact theory

The main drawback of Boltzmann machine learning
that solving the forward problem—that is, estimating exp
tations by the Gibbs sampler, or exhaustively comput
them—is very time consuming and hence often impractic
A mean-field theory tries to circumvent the difficulty by ut
lizing a mean-field approximation to solve the forward pro
lem analytically.

In this subsection I describe an exact theory for solv
the forward problem. I start with Gibbs free energy of
Boltzmann machinep with parametershi andwi j , which is
obtained by Legendre transform of Helmholtz free ene
2c(p),

F~p!5F2c~p!1(
i

hi~p!mi~p!G2(
i

himi~p!. ~4!

The last term corresponds to the Zeeman energy. It shoul
noted that the independent variables ofF(p) are now
mi(p)[^si&p and wi j by the Legendre transform, and th
hi(p)’s are dependent of them, whereashi , appearing in the
Zeeman energy term should be regarded as being inde
dent ofmi(p).

Sincehi andwi j are assumed to be given in the forwa
problem, minimization ofF(p) with respect tomi[mi(p)
gives the true averagesmi5^si&p . Furthermore,̂ sisj&p can
be obtained fromF(p) and the true values ofmi5^si&p, by
using the linear response theorem@5#. This says that the sus
ceptibility matrix

x i j 5^sisj&p2^si&p^sj&p ~5!

and the stability matrix

Ai j 5
]2F

]mi]mj
~6!

are the inverse of the others; that is, the following ident
holds:
ti-

e

l
s-

i-

-
g
l.

-

g

y

be

n-

(
j

x i j Ajk5d ik. ~7!

Using this theorem, one can obtain the true averages^sisj&p
by first computing the stability matrix (Ai j ) from F(p), in-
verting it to obtain the susceptibility matrix (x i j ), and then
computing^sisj&p by

^sisj&p5x i j 1mimj ~ iÞ j !. ~8!

It should be noted that a set of the parameter valueshi and
wi j uniquely determines a set of the average values^si&p and
^sisj&p with respect to the Boltzmann-Gibbs distributionp
@Eq. ~2!#. In fact, there is a one-to-one correspondence
tween them. Therefore, the averages to be obtained by
above scenario should be the exact ones, and they pro
the exact solution to the forward problem.

The difficulty of the scenario lies in the fact that on
cannot write the Gibbs free energyF(p) explicitly as a func-
tion of mi , which makes the scenario intractable. Mean-fie
theory gives approximations ofF(p) as analytical functions
of mi . Using any one of the approximations, one can so
the forward problem approximately by following the sc
nario presented above.

B. Plefka expansion

The mean-field approximation of the Gibbs free ener
has been derived in several ways. Of these, the derivatio
Plefka @13# is particularly suitable for application to Boltz
mann machines, since it does not regardwi j ’s as random
quantities and hence does not require averaging over th
In spin glass theorywi j ’s are generally regarded as rando
variables, representing random interactions, and one
lyzes, in the thermodynamic limit, properties which do n
depend on a particular realization ofwi j ’s. For Boltzmann
machine learning, on the other hand,wi j ’s are given and
fixed, and hence in principle they cannot be thought of
random variables.

Let us consider a Boltzmann machinep with parameters
hi and wi j . In Plefka’s argument, a mean-field approxim
tion of the Gibbs free energy is systematically derived
considering the following one-parameter HamiltonianH(a):

H~a!52a(̂
i j &

wi j sisj2(
i

hisi , ~9!

and then expanding the true Gibbs free energyF(a) for the
Hamiltonian into the power series ofa:

F~a!5F~0!1aF8~0!1 1
2 a2F9~0!1 1

6 a3F-~0!1¯ ,
~10!

where F8(a)[]F/]a, F9(a)[]2F/]a2, and so on. This
expansion is called the Plefka expansion. Note that the
rivatives with respect toa should be taken withmi fixed.
SinceH(a51) is the original Hamiltonian~1! to be consid-
ered, settinga51 in Eq. ~10! yields, leaving the conver-
gence problem aside, the true Gibbs free energy, i.e.,F(p)
[F(1).

The coefficients of the Plefka expansion up to third ord
are given as follows@14#.
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F~0!5
1

2 (
i

F ~11mi !lnS 11mi

2 D
1~12mi !lnS 12mi

2 D G2(
i

himi , ~11!

F8~0!52(̂
i j &

wi j mimj , ~12!

F9~0!52(̂
i j &

wi j
2 ~12mi

2!~12mj
2!, ~13!

F-~0!524(̂
i j &

wi j
3 mimj~12mi

2!~12mj
2!

26(
^ i jk &

wi j wjkwik~12mi
2!~12mj

2!~12mk
2!.

~14!

In the above,̂ i jk & means that the summation should
taken over all distinct triplets. By truncating the Plefka e
pansion up to thenth-order term and lettinga51, one can
obtain thenth-order approximationFn of the Gibbs free en-
ergy F. Note thatF1 is identical to the Weiss free energ
and F2 is the TAP free energy for Sherrington-Kirkpatric
~SK! models: For the case of Boltzmann machines with fin
N, one cannot expect in general that higher-order terms v
ish, andFn is indeed an approximation ofF.

C. Mean-field approximation

1. Forward problem

From thenth-order approximation of the Gibbs free e
ergy, one can construct thenth-order method of mean-field
approximation. In this subsection I describe the methods
several orders for the forward problems. In Sec. III C 2 I w
discuss the methods for the backward problems.

As described above, minimization of the Gibbs free e
ergy F with respect tomi gives the true value ofmi . Using
thenth-order approximationFn in place ofF, one can obtain
annth-order estimate ofmi by minimizingFn with respect to
mi . This minimization problem can be solved by consideri
the stationary conditions]Fn /]mi50, i 51,...,N. These
conditions constitute the self-consistent equations of
nth-order mean-field approximation. For example, whenn
51, the conditions are

tanh21 mi2hi2(
j Þ i

wi j mj50, ~15!

which are those of Weiss mean-field theory. Forn52 these
give the TAP equations for SK models:

tanh21 mi2hi2(
j Þ i

wi j mj1(
j Þ i

wi j
2 ~12mj

2!mi50.

~16!

Self-consistent equations for still higher orders can be
tained in the same way. BecauseFn is an approximation of
F, solutionsmi of the stationary conditions are not exac
-

e
n-

of

-

e

-

Moreover, they are not necessarily unique, as extensiv
studied in spin glass literature@15#.

The linear response theorem provides a practical basis
the linear responsecorrection @4#, which gives an approxi-
mate estimate of the correlations^sisj&p in the mean-field
approximation. Using the solution$mi% of the self-consistent
equations, the approximated stability matrix

Ai j
~n!5

]2Fn

]mi]mj
~17!

is evaluated in terms of the already known quantitiesmi and
wi j . For example,Ai j

(1) is given by

Ai j
~1!5

1

12mi
2 d i j 2wi j . ~18!

wi j for i 5 j is undefined, and should be regarded as 0 at
point. Although the linear response theorem no longer ho
exactly since (Ai j

(n)) is not exact, one can expect that it st
holds approximately. Thus inverting (Ai j

(n)) yields the ap-
proximated susceptibility matrix (x i j

(n)). Then, using relation
~5!, while substitutingx i j

(n) andmi in place ofx i j and^si&p ,
respectively, one can compute annth-order estimate of
^sisj&p . This constitutes the linear response correction in
nth-order mean-field approximation.

So far, under the condition thathi andwi j of a Boltzmann
machinep are all known, one can estimate^si&p and^sisj&p
from the self-consistent equations and the linear respo
correction of nth-order mean-field approximation, respe
tively, in the way described above, which defines a meth
of solving the forward problem approximately. I will call th
method thenth-order method for the forward problem.

2. Backward problem

For Boltzmann machines without hidden units, one c
solve the backward problem directly by using the mean-fi
approximation, without referring to the error feedbac
scheme~3! employed in the ordinary Boltzmann machin
learning. Assume that̂si&p and^sisj&p are all known. Then
the susceptibility matrix (x i j ) is computed exactly using Eq
~5!. Inverting it yields the~exact! stability matrix (Ai j ). On
the other hand, the stability matrix has under thenth-order
mean-field approximation an analytic expression deriv
from Eq. ~17!, which is a function ofmi5^si&p and wi j .
Equating them gives the simultaneous equations from wh
wi j ’s are to be determined, sincemi5^si&p are assumed to be
known. Oncewi j ’s are obtained, one can evaluatehi using
the self-consistent equations of thenth-order approximation.
The procedure described above constitutes thenth-order
method for solving the backward problem.

It should be noted that, although evaluation ofhi ’s is an
appropriately defined problem—since the number of va
ableshi to be determined,N, is equal to the number of the
self-consistent equations—evaluation ofwi j ’s bears a prob-
lem of overdetermination because the number of variab
wi j to be determined isN(N21)/2, whereas the number o
independent equalities of Eq.~7! is N(N11)/2 including
those for the diagonals, since the susceptibility and stab
matrices are symmetric. These equations should be sim
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neously satisfied by the truewi j ’s in theexacttheory, where
mi ’s are also true, but inapproximatetheory it is no longer
expected for them to hold simultaneously. There may be s
eral choices for dealing with the overdetermination, both
the forward and backward problems. KR@4# employed a
heuristics of using theN(N21)/2 equations on the off
diagonals of thesusceptibilitymatrix for both of the prob-
lems. The heuristics of KR has a merit of consistency in th
given a Boltzmann machinep, when one solves the back
ward problem using a solution of the forward problem withp
one obtains a result which is identical withp. Even though
the consistency property is the preferable one, an argum
of how these choices affect the degree of accuracy of
approximation will be very intricate. Therefore, I leave t
problem of how to cope with the overdetermination beyo
the scope of this paper.

IV. DIAGONAL-WEIGHT TRICK

Within the framework presented in this paper, the K
method can be regarded as a variant of the first-or
method, since it is based on the Weiss free energyF1 . Nu-
merical experiments@4# reveal, however, that it performs fa
better than the first-order method described above. The
ference between KR and first-order methods is that KR s
gested using ‘‘diagonal weights’’wii , which are to be de-
fined by

Aii 5
1

12mi
2 2wii . ~19!

This equation can be regarded as a naive application of
~18! to the diagonalsi 5 j , without regardingwii to be zero.
The self-consistent equation~15! is rewritten accordingly as

tanh21 mi2hi2(
j

wi j mj50, ~20!

where the summation now includes the diagonal termwii mi .
An obvious merit of this ‘‘diagonal-weight trick’’ is that it
practically resolves the overdetermination problem discus
in Sec. III C 2, because the number of variables to be de
mined is nowN(N11)/2, which is equal to the number o
independent equations. Thus one can simply take theN(N
11)/2 equations for the elements of the stability matrix
order to determineN(N11)/2 variableswi j . The most im-
portant advantage of the diagonal-weight trick is, howev
that it is what enables the KR method to perform subst
tially better than the first-order method, as shown in t
section.

I present an explanation of the diagonal-weight trick
the basis of the third-order theory. In the third-order appro
mation the diagonal weightswii determined by the trick~19!
are given by
v-
r

t,

nt
e

d

er

if-
g-

q.

d
r-

r,
-

s

i-

wii 52(
j Þ i

~wi j !
2~12mj

2!

24(
j Þ i

~wi j !
3mimj~12mj

2!

22 (
^ i u jk&

wi j wikwjk~12mj
2!~12mk

2!. ~21!

The notation^ i u jk& means that the summation should
taken over all distinct triplets withi fixed. The first term
comes from the second-order term of the Gibbs free ene
and the remaining two terms from the third-order term.
should be noted that thewi j wikwjk terms are expected to b
dominant among the third-order terms, since the numbe
such terms isO(N2), whereas the number of (wi j )

3 terms is
O(N). The diagonal termwii mi can be written as

wii mi52
]

]mi
S 1

2
F9~0!1

1

6
F-~0! D

2
2

3 (
j Þ i

~wi j !
3~113mi

2!mj~12mj
2!. ~22!

Therefore, the self-consistent equation~20! with the diagonal
term eventually takes into account the second-order t
1
2 (]F9(0)/]mi) as a whole, and the dominant part of th
third-order term1

6(]F-(0)/]mi):

tanh21 mi2hi2(
j

wi j mj

5
]

]mi
F12wii mi

5
]

]mi
F31

2

3 (
j Þ i

~wi j !
3~113mi

2!mj~12mj
2!. ~23!

This shows that, if the second-order approximation of
free energy is exact, the first-order method with the diagon
weight trick and the second-order method without it will giv
the same results. Even if the third-order term of the fr
energy cannot be neglected, the dominant part is incor
rated by the diagonal term, and one can expect that the re
will not be so different from the result of the third-orde
method without the trick, if the part incorporated by the d
agonal term is indeed dominant.

It is possible to extend the argument to still higher orde
In the nth-order coefficientF (n)(0), n>3, of the Plefka ex-
pansion~10!, the part which is dominant in the number o
terms@O(Nn)# is given by@14#
2n! (
^ i 1,i 2 ,...,i n&

wi 1i 2
wi 2i 3

•••wi ni 1
~12mi 1

2 !~12mi 2
2 !¯~12mi n

2 !. ~24!

The dominant part contributes to the self-consistent equations by the terms
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1

n!

]F ~n!~0!

]mi
'2 (

^ i u i 2 ,...,i n&
wii 2

wi 2i 3
•••wi ni~12mi 2

2 !¯~12mi n
2 !mi , ~25!
p
r i
ow
n
th

bi
de
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-

by
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te
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o
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and to the diagonal weightwii by

2
1

n!

]2F ~n!~0!

]mi
2

'22 (
^ i u i 2 ,...,i n&

wii 2
wi 2i 3

•••wi ni~12mi 2
2 !¯~12mi n

2 !.

~26!

It is evident in these expressions that the latter, as a com
nent of the diagonal weight, exactly cancels out the forme
the self-consistent equation. Therefore, it has been sh
that the diagonal termwii mi in the self-consistent equatio
effectively cancels out the dominant parts coming from
nth-order terms (n>2) of the Plefka expansion.

The above discussion shows that the KR method exhi
a performance superior to the conventional first-or
method because it effectively incorporates higher-order c
tributions via the diagonal-weight trick. It is possible to com
bine the trick with the second- or third-order method,
eliminating from the self-consistent equations the terms
ready incorporated by the diagonal term. The self-consis
equation of the second-order method with the diagon
weight trick is the same as Eq.~20!, that of the first-order
method with the trick, because the entire second-order c
tribution to the self-consistent equation has already been
corporated by the diagonal term. Similarly, the se
consistent equation of the third-order method with the trick
given explicitly by the simple formula

tanh21 mi2hi2(
j

wi j mj~11ci j !50, ~27!

wherecii 50,

ci j 5
2
3 ~wi j !

2~113mi
2!~12mj

2! ~28!

for iÞ j , andwii is determined by Eq.~19!.
Use of the diagonal-weight trick is especially advan

geous for solving the backward problems, because it sa
the amount of computation to a considerable extent. For
forward problems, however, the diagonal weightswii should
be determined so that the diagonal termsx i i

(n) of the approxi-
mated susceptibility matrix are equal to 12mi

2 , which
would require iterative computation and does not seem p
tical.

V. COMPARISON OF PERFORMANCE BY COMPUTER
SIMULATIONS

Thus far, a family of mean-field-theory-based methods
various orders has been obtained systematically from
Plefka expansion. It is then important to compare the per
mance of these methods. Since the Plefka expansion is
sentially a Taylor expansion, the accuracy depends on
o-
n
n

e

ts
r
n-

l-
nt
l-

n-
n-

s

-
es
e

c-

f
e

r-
es-
he

order of expansion as well as the magnitude ofwi j ’s in a
quite complicated manner. One can expect, for sufficien
small wi j ’s, that higher-order methods give better resu
However, whenwi j ’s are large, higher-order methods ma
give erroneous results. I compared the accuracy of the m
ods for various orders using computer simulations, not
propose novel efficient algorithms, but to gain insight in
how each of the methods will perform under certain con
tions.

We restrict ourselves to cases where there are no hid
units. As already mentioned, in such cases one can dire
solve the ‘‘backward’’ problem of estimating the paramete
hi andwi j from the expectationŝsi&p and^sisj&p , which are
assumed to be observed exactly. We also focus on the c
where the number of unitsN is small, in order to evaluate th
accuracy of results explicitly by means of Kullback dive
gence. In the simulations the target distributionp(s), defin-
ing ^si&p and ^sisj&p , was assumed to be given by anoth
Boltzmann machine, whose parametershi andwi j were cho-
sen as independent random variables following a Gaus
distribution with meanm50 and variances2.

A. Description of algorithms

In this subsection I summarize the actual procedu
implementing the methods used in the simulations. Since
simulations treat the backward problems, the algorithms
sically follow the description in Sec. III C 2. An importan
issue is the way to resolve the overdetermination.
this paper I employ the simplest heuristics to use
N(N21)/2 equations on the off-diagonal elements of t
stability matrix:

Ai j 5
]2Fn

]mi]mj
~ iÞ j !. ~29!

The algorithms of the methods without the diagon
weight trick are summarized as follows:

~1! Compute the susceptibility matrix (x i j ) from the ob-
served^si&p and ^sisj&p using Eq.~5!.

~2! Invert it to obtain the~exact! stability matrix (Ai j ).
~3! Computewi j ’s by solving Eq.~29! with mi5^si&p .
~4! Computehi ’s by substitutingmi andwi j into the self-

consistent equations.
Equation~29! reads, for the first-order method,

Ai j 52wi j ; ~30!

for the second-order method,

Ai j 52wi j 22~wi j !
2mimj ; ~31!

and, for the third-order method,

Ai j 52wi j 22~wi j !
2mimj
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2
2

3
~wi j !

3~123mi
2!~123mj

2!

24 (
kÞ i , j

wi j wikwjkmimj~12mk
2!, ~32!

all for iÞ j . For the first- and second-order methods, E
~30! or ~31! can be solved independently for eachwi j . For
the third-order method, however, Eq.~32! should be solved
simultaneously. In the following simulations this was do
by the gradient-descent method on the squared residual e
Another practical difficulty is that Eqs.~31! and ~32! are
nonlinear, and may have more than one solution. Consi
ing the origin of these equations that have been obtai
from Taylor expansion, one can expect continuity of the
lution as higher-order effects are gradually increased fr
zero, provided that the approximation based on the exp
sion is valid. Based on the continuity property one can p
up the relevant solution. In the following simulations, for t
second-order method this was done analytically. For
third-order method it was done numerically, pursuing t
solution while increasing the magnitude of the third-ord
terms. In fact this approach requires a considerable am
of computation and hence is less practical, but it is expec
to retain the reliability of the obtained solution. Of course,
view of the amount of computation there may be other
proaches.

Self-consistent equations for the first- and second-or
methods are given by Eqs.~15! and ~16!, respectively. The
self-consistent equation for the third-order method is

tanh21 mi2hi2(
j Þ i

wi j mj1(
j Þ i

wi j
2 ~12mj

2!mi

2
2

3 (
j Þ i

~wi j !
3~123mi

2!mj~12mj
2!

12 (
^ i u jk&

wi j wikwjkmi~12mj
2!~12mk

2!50.

~33!

Using only the zeroth-order term of the Plefka expansi
along with the Zeeman energy term, gives a method whic
call the zeroth-order method. It is defined as

hi5tanh21 mi , wi j 50. ~34!

The algorithms of the methods with the diagonal-weig
trick are defined as follows:

~1! Compute the susceptibility matrix (x i j ) from the ob-
served^si&p and ^sisj&p using Eq.~5!.

~2! Invert it to obtain the~exact! stability matrix (Ai j ).
~3! Computewi j ’s by solving Eq.~29! for iÞ j , and Eq.

~19! for i 5 j , with mi5^si&p .
~4! Computehi ’s by substitutingmi andwi j into the self-

consistent equations.
The self-consistent equations for the first- and seco

order methods are both given by Eq.~20!. For the third-order
method I used Eq.~27! to supplement the terms which a
not taken into account by the diagonal term@see Eq.~23!#.
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The approaches taken to resolve the overdetermination
the multiple solutions are the same as those employed in
methods without the diagonal-weight trick.

B. Results and discussion

1. Methods without diagonal-weight trick

In the first set of simulations I compared the accuracy
the zeroth-, first-, second-, and third-order methods with
the diagonal-weight trick. The Kullback divergenceD be-
tween the target and the result given by each of the meth
was measured, and the averages^D& of 200 trials were plot-
ted in Fig. 1. The horizontal axis is scaled with the norm
ized variances0

2[(N21)s2.
For small s0 , higher-order methods had consisten

lower average divergences, and thus the third-order met
gave the best results among all the methods investiga
This indicates that the inclusion of higher-order terms c
tainly improved the accuracy in such cases. On the ot
hand, for largers0 the third-order method became nume
cally rather unstable and sometimes gave results with e
neously large divergences, which make the averaged di
gence^D& large. For still largers0 the second- and first
order methods also showed similar behaviors. The errone
behavior is not hard to detect for each trial since it appe
rather drastically. I investigated this behavior in more de
for the third-order method, since it showed the behavior m
evidently. For measuring to what extent a result given by
third-order method is unreliable, I used the ratioD3 /D2 of
the two divergencesD35D(p3rdip) andD25D(p2ndip) for
a targetp, the former being the one between the targetp and
the resultp3rd given by the third-order method, and the latt

FIG. 1. Average Kullback divergencêD& between the ran-
domly generated targets and the Boltzmann machines determ
by a mean-field approximation of several orders without
diagonal-weight trick, vss0

2[(N21)s2. Results forN53, 5, 9,
and 17 ands50.05, 0.1, 0.2, 0.3, 0.5, and 0.8 are shown. The f
lines connecting markers show that the markers are the result
the same value ofs. The dashed lines indicate that the markers
the results of the third-order method when the averages are t
over ‘‘reliable’’ trials only.
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between the targetp and the resultp2nd given by the second
order method. As an example, Fig. 2 shows a histogram
the ratioD3 /D2 for the case whereN512 ands50.4. In
the following, a heuristic criterion, that trials with a rat
D3 /D2 greater than 100 are judged as unreliable, was u
throughout. Shown in Fig. 1 by dashed lines are the div
gences averaged over trials which were judged as reli
with the criterion above.

This instability of the higher-order methods can be e
plained in terms of the phase transition in spin glass the
The condition for phase transition into the spin glass ph
can be expressed ass0

251 for the SK model (hi[0). When
s0

2 is larger than this point, it is known that the se
consistent equation for the SK model develops many s
tions. In the spin glass phase the free energy has a so-c
many-valley structure, and each valley is separated fr
other valleys by barriers of infinite height. Some of the s
lutions of the self-consistent equation are expected to co
spond to such valleys, and when the state is trapped wi
one of the valleys the time average of spin variables will
given by one such solution. Intuitively speaking, the pha
transition phenomenon, or bifurcation of solutions, also
curs in Boltzmann machines, and results in the observed
roneous behavior of higher-order methods. Figure 3 show
result which supports this explanation. It shows how the p
portion of reliable trials depends ons0

2 for the third-order
method. The proportion decreases from 1 to 0 arounds0

2

FIG. 2. Histogram of the ratioD3 /D2 for the casesN512 and
s50.4. Results of 1000 trials are shown.

FIG. 3. Proportion of ‘‘reliable’’ trials to total trials for the
third-order method. The number of total trials are 500, 200, and
for N56, 12, and 18, respectively.
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;1 as expected by spin glass theory, and it is observed
the slope becomes steeper asN increases, suggesting that
reflects the phase transition phenomenon.

It can be stated that the effectiveness of the meth
based on mean-field theory for Boltzmann machine learn
is affected by the phase transition phenomenon. It should
noted that, as for Boltzmann machine learning, the relev
quantities are not the time averages but the Gibbs avera
Once all the parametershi andwi j are given, the Gibbs av
erages are in principle completely determined by these
rameters, and thus the correct solution for$mi% should be
unique. Therefore, when the self-consistent equation
many solutions, elaborating any one of these solutions is
use for evaluating the time averages, but will be of little u
for evaluating the Gibbs averages, which are the relev
quantities. The methods based on mean-field theory w
well in the ‘‘paramagnetic’’ region~i.e., all wi j ’s are rela-
tively small and the solution of the self-consistent equatio
is unique! and higher-order methods give more accurate
sults, whereas, in the ‘‘spin glass’’ region beyond the ph
transition point~wi j ’s are large!, methods based on mean
field theory can provide many spurious results. In such c
ditions even the first-order method becomes rather unst
and gives erroneous results, while the simple zeroth-or
method seems to be robust against the instability, as i
cated by the larges0

2 part of Fig. 1. It should be noted, from
a practical viewpoint, that the ‘‘spin glass’’ phase limits th
usefulness not only of mean-field-theory-based methods
also of the direct method using the Gibbs sampler to so
the ‘‘forward’’ problem. The Gibbs sampler evaluates t
time averages for estimating the Gibbs averages by simu
ing the physical process, and it will, as is the case with r
spin glasses, become trapped in one of the valleys for a c
siderably long time, which will prevent it from correctly es
timating the Gibbs averages from the time averages.

2. Methods with diagonal-weight trick

In order to investigate how the diagonal-weight trick a
fects accuracy, I executed another set of simulations w
methods employing the diagonal-weight trick. The sets
targets used in these simulations were the same as tho
previously described simulations without the trick. The r
sults, obtained as average Kullback divergences^D&, are
summarized in Fig. 4.

When s0
2 is small, the third-order method with th

diagonal-weight trick marks the best performance on av
age. The first- and second-order methods showed almos
same performance, and thus these two methods are ha
distinguish on the figure. The performance of these t
methods was also almost the same as that of the second-
methodwithout the diagonal-weight trick, as shown in Fig
5. These observations show that the first-order method w
the diagonal-weight trick performs as good as the seco
order methods owing to the trick, which means that the tr
is quite effective in such conditions. It is also consistent,
to second order, with the analytical argument on the tr
presented in Sec. IV. The self-consistent equations for th
three methods@Eqs. ~16! and ~20!# are effectively identical
up to the second order. The second-order term is identica
the Onsager reaction term of SK models. As is well kno
in spin glass theory, this cannot be neglected in conside
0
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such randomly frustrated systems, and its inclusion in
simulations certainly improved the accuracy, as expec
The equations giving the linear response correction are
ferent for these methods@Eqs.~30! and ~31!# in the second-
order term22(wi j )

2mimj , but this seems to have little ef
fect on the results in this case.

One may suppose that the second-order te
22(wi j )

2mimj has little effect whens0
2 is small because in

such casesmi ’s are close to zero, and therefore this seco
order term becomes vanishingly small compared withwi j .
To investigate this, still another set of simulations was
ecuted, in which the parametershi of the target distribution
p(s) were chosen as independent Gaussian random varia
with variances2 and meanm50.8 instead of 0. This setu
allows us to check the effect ofmi ’s, which are now no

FIG. 4. Average Kullback divergence of methods of seve
orders with the diagonal-weight trick. Results forN53, 5, 9, and 17
ands50.05, 0.1, 0.2, 0.3, 0.5, and 0.8 are shown.

FIG. 5. Average Kullback divergence of the first- and seco
order methods with and without the diagonal-weight trick. Resu
for N53, 5, 9, and 17 ands50.05 and 0.1 are shown.
e
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longer small, whilewi j ’s remain small as before. The resul
are summarized in Fig. 6. The first-order method with t
trick showed a slightly better performance than the fir
order method without the trick, implying that the incorpor
tion of the diagonal weight has an effect of improving acc
racy again in this case. However, its performance w
considerably worse than the second-order methods. It sh
that the second-order term22(wi j )

2mimj certainly affects
the accuracy whenhi ’s ~hencemi ’s! are not close to zero.

When considering up to the third order, it seems that th
results do not correspond to the analytical argument. Acco
ing to the argument, the effective incorporation of ‘‘dom
nant parts’’ of the third-order contribution via the diagon
term, if it works as anticipated, will have the second-ord
method with the diagonal-weight trick outperform th
second-order method without the trick, and lie closer to
third-order method without the trick. The results in Figs.
and 5 showed that the former two methods were almost
same in performance, whereas the latter outperformed th
two. This means that the effective incorporation of domina
parts by the diagonal term did not work efficiently in tho
situations investigated in these simulations, which would
guably be due to smallN. For the case wherehi ’s are biased
with m50.8, the second-order method without the tri
showed better performance than the second-order me
with the trick whens0

2 is small. In fact, the performance o
the former was almost equal to the performance of the th
order method without the trick. From these results it sho
be stated that the effectiveness of the diagonal-weight t
varies between cases. As far as I investigated, it was
served as a general trend that the trick improved accur
with hi ’s smaller compared withwi j ’s, whereas it gave
worse results than without it whenhi ’s were larger.

Whens0
2 becomes large, instability appears just as it do

for methods without the diagonal-weight trick. It was o
served that higher-order methods are more sensitive, and
employing the diagonal-weight trick makes them somew

l

-
s

FIG. 6. Average Kullback divergence of the first- and secon
order methods with and without the diagonal-weight trick. T
meanm of the parametershi is set to 0.8. Results forN53, 5, 9,
and 17 ands50.05 and 0.1 are shown.



t

s
bo
g
ou
s

olt
a
o
e
ro
de
o
f a
p

th
d

am
n
d
e
s
th

for
od

hod
as

ffec-
ns.
be-

nal
s
pu-

t
er
to

si-
ms
es
this

y

r-

2310 PRE 58TOSHIYUKI TANAKA
less sensitive than without it, but these tendencies are no
apparent in the figure. In the region wheres0

2@1 the zeroth-
order method was the best among all the methods inve
gated. This again supports the argument presented a
that, in such cases, higher-order treatments intended to
more precision are actually not effective and give errone
results, and that the simplest zeroth-order method seem
be robust against the instability.

VI. CONCLUSION

I have presented a unified theory of the mean-field B
zmann machine learning based on TAP free energy form
ism and incorporating the linear response theorem in a c
sistent way. By utilizing the Plefka expansion, an extend
theory including higher-order terms has been discussed, f
which a mean-field approximation of general orders is
rived by truncating the Plefka expansion up to desired
ders. Based on the framework, a theoretical foundation o
effective trick of using diagonal weights, introduced by Ka
pen and Rodrı´guez, has been also given.

Computer simulations for comparing the accuracy of
methods of various orders have shown that higher-or
methods give better results when the parametershi andwi j
of the target are small. On the other hand, when the par
eters are large, higher-order methods exhibit instability a
may give erroneous results, while the simplest zeroth-or
method is robust against such instability and gives the b
results. These observations have been explained in term
the spin glass phase transition, and this seems to limit
lo
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effectiveness of the methods based on mean-field theory
Boltzmann machine learning, as well as the direct meth
using the Gibbs sampler.

When the parameters are small, the first-order met
with the diagonal-weight trick has shown a performance
good as the second-order methods, which supports the e
tiveness of the KR method and the trick in such conditio
However, the effectiveness of the trick in general varies
tween cases, as was shown by computer simulations.

In this paper we have left aside the issue of computatio
complexity. Whenwi j ’s are small the higher-order method
give better results, but at the expense of increasing com
tation time. As mentioned by KR@4#, the computation time
required for the KR method isO(N3) because it includes
inversion of a matrix of sizeN. This is the same order as tha
of the second-order method. However, the third-ord
method is computationally much heavier because it has
incorporate an iterative calculation for solving nonlinear
multaneous equations. For practical applications it see
that appropriate algorithms and/or approximation schem
are necessary, and we expect that the theory presented in
paper will be useful in deriving such schemes.
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