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| present a mean-field theory for Boltzmann machine learning, derived by employing Thouless-Anderson-
Palmer free energy formalism to a full extent. Using the Plefka expansion an extended theory that takes
higher-order correction to mean-field free energy formalism into consideration is presented, from which the
mean-field approximation of general orders, along with the linear response correction, are derived by truncat-
ing the Plefka expansion up to desired orders. A theoretical foundation for an effective trick of using “diagonal
weights,” introduced by Kappen and Roguez, is also given. Because of the finite system size and a lack of
scaling assumptions on interaction coefficients, the truncated free energy formalism cannot provide an exact
description in the case of Boltzmann machines. Accuracies of mean-field approximations of several orders are
compared by computer simulatio§1063-651X98)05308-3

PACS numbgs): 84.35:+i, 05.20—y, 75.10.Nr, 87.10te

I. INTRODUCTION Il. BOLTZMANN MACHINE LEARNING

A Boltzmann machine wittN units can be regarded as an

| present a mean-field theory for Boltzmann machinelsing spin system having spin variablese{—1,1}, i
learning, which is derived by employing Thouless-Anderson-=1,... N, with interactionsw;; between sites andj and
Palmer(TAP) free energy formalisniil] to a full extent. A external fieldsh; acting on sites as its parameters. Hamil-
mean-field approach to Boltzmann machine learning wagonianH(s) determining energy for each spin configuration
suggested by Peterson and Ander§@h However, mean- S=(S1,...,Sn) IS given by
field Boltzmann machine learning has drawn attention
mainly because of its practical efficiency. Some theoretical —_ e .
considerations have also been mg&le but most of these are Hs) EI s <|2,> WiySisy s @
based on so-called “naive” mean-field theory. Recently,
Kappen and Rodguez[4] (KR hereaftey applied the linear where the notatiofij) means all distinct pairs. When values
response theoreni5] to mean-field Boltzmann machine of h; andw;; are given, a Boltzmann machine represents a
learning. In this paper, |, extending their argument to includeBoltzmann-Gibbs distribution
higher-order terms, present a mean-field theory which is

fully consistent with the TAP approach in spin glass theory. p(s)=exd —H(s)—#]

In the context of mean-field Boltzmann machine learning,
the TAP approach has been mentioned in a number of stud- =ex;{z hisi+ >, Wi;SiSj— ¢/, (2
ies. Galland 6] used the TAP free energy in a rather heuris- : (ij)

tic way. KR [4] also mentioned the TAP free energy, but

they did not utilize it in their study. Inclusion of the Onsager

reaction term was also suggested in REfs8]. | believe this

to be the first consistent treatment of the TAP formalism

within the framework of mean-field Boltzmann machine . o X Y .
pressions such as “a Boltzmann machipgs).” For sim-

learning. Plicity, in what follows | will argue the case without hidden

The linear response theorem is also an important toounits, but extension of the following argument to the case

which enables us to obtain information about correlation§Nith hidden units is straightforward.
within mean-ﬁeld theory. It h_as_ been su_ccessfully applied, The objective of Boltzmann machine learning can be
for example, in analyzing, within mean-field theory, a sto-giated in terms of spin systems as follows: Determine exter-
chastic network model for correlation-based “dynamicalpy) fieldsh; and interactionsv;; , by knowing average mag-
linking” of features[9]. | will show that treatment of the netizations(s;), and correlationgs;s; ), for spins at thermal
linear response theorem within the framework based on thequilibrium. These averages are taken with respect to the
TAP formalism provides a quite natural and consistent argugoltzmann-Gibbs distributiop [Eq. (2)]. This can be seen
ment as to how it works. as a “backward” problem, and the corresponding “for-
KR [4] also suggested the effective heuristics of usingward” problem, that is to es’[imatésop and <Sisj>p by
“diagonal weights,” which was justified by the fact that knowingh; andw;; , can be solved by simulating the physi-
these gave good results. | will also provide a theoreticakal process(the Gibbs samplef10]). Boltzmann machine
foundation of this “diagonal-weight trick,” on the basis of learning[11] solves the backward problem by utilizing the
the framework presented in this paper. forward problem via error feedback: Lef(s) be a target

where — ¢ is the Helmholtz free energy. Here, and in the
sequel, | assume that the “temperature” is unity without loss
of generality. | will identify a Boltzmann machine and the
Boltzmann-Gibbs distribution represented by it, and use ex-
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Boltzmann maching(s) with parameterdy; andw;;. One

knows the averageés;) and(s;s;)q with respect toq(s), 2 XiiAjk= Sik- ()
and wants to estimate the parameterandw;; from these J

averages. Boltzmann machine learning updates current eslissing this theorem, one can obtain the true averdges),
mates of the valuels; andw;; by the following learning rule:  py first computing the stability matrixA;) from F(p), in-

verting it to obtain the susceptibility matrixy(;), and then
Ahi:8(<si>q_<si>p)i AWIJ :8(<Sisj>q_<sisj>p)i (3) Computing<sisj>p by :

wh(_are the averagds), are to b.e evaluated from the current (sispp=xijTmm;, (i#]j). (8)
estimates oh; andw;; by solving the forward problem. It

executes the gradient descent of Kullback divergence It should be noted that a set of the parameter vayesnd
D(plig)==4q(s)In(q(s)/p(s)) between the target distribu- w;; uniquely determines a set of the average valisgs, and

tion q(s) and the Boltzmann maching(s), whose param- (S;S;), with respect to the Boltzmann-Gibbs distributipn
eters are equal to the current estimateb;aindw;; . If there  [Eq. (2)]. In fact, there is a one-to-one correspondence be-
are no hidden units, this learning rule provides the optimatween them. Therefore, the averages to be obtained by the
Boltzmann machine which best approximates the target disabove scenario should be the exact ones, and they provide
tribution [12]. If there are hidden units, it still provides a the exact solution to the forward problem.

locally optimal one, but it does not assure the global opti- The difficulty of the scenario lies in the fact that one

mality. cannot write the Gibbs free ener&yp) explicitly as a func-
tion of m;, which makes the scenario intractable. Mean-field
IIl. MEAN-EIELD THEORY theory giv_es approximations &f(p) as an_alytical functions
of m;. Using any one of the approximations, one can solve
A. Exact theory the forward problem approximately by following the sce-

The main drawback of Boltzmann machine learning ishario presented above.
that solving the forward problem—that is, estimating expec-
tations by the Gibbs sampler, or exhaustively computing B. Plefka expansion
them—is very time consuming and hence often impractical. The mean-field approximation of the Gibbs free energy
A mean-field theory tries to circumvent the difficulty by uti- 155 heen derived in several ways. Of these, the derivation by
lizing a mean-field approximation to solve the forward prob-pjefka[13] is particularly suitable for application to Boltz-
lem analytically. _ __mann machines, since it does not regarg's as random
In this subsection | describe an exact theory for solvingy aniities and hence does not require averaging over them.
the forward problem. | start with Gibbs free energy of &, gpin glass theoryv;;’s are generally regarded as random
Boltzmann maching with parametersy; andw;;, which is  \ariaples, representing random interactions, and one ana-
obtained by Legendre transform of Helmholtz free energyy;es in the thermodynamic limit, properties which do not
—¢(p), depend on a particular realization of;'s. For Boltzmann
machine learning, on the other handg;’s are given and
F(p)=| —¢(p)+ > hi(p)mi(p)|— > himi(p). (4 fixed, and hence in principle they cannot be thought of as
! ! random variables.

Let us consider a Boltzmann machipewith parameters
The last term corresponds to the Zeeman energy. It should ke

) ; i andw;; . In Plefka’s argument, a mean-field approxima-
noted that the independent variables B{p) are now ion of the Gibbs free energy is systematically derived by

m;(p)=(si)p andw;; by the Legendre transform, and that -qnsidering the following one-parameter Hamiltontaw):
h;(p)’s are dependent of them, wherdgas appearing in the

Zeeman energy term should be regarded as being indepen-

dent ofm,(p). H(@)=—a2 wijss— 2 his, 9)
Sinceh; andw;; are assumed to be given in the forward i)

problem, minimization of~(p) with respect tom=mi(p)  and then expanding the true Gibbs free endfgy) for the

gives the true averages;=(s;),. Furthermore(s;sj), can  Hamiltonian into the power series of
be obtained fronF(p) and the true values of;=(s;),, by

using the linear response theor€d}. This says that the sus-  F(a)=F(0)+aF'(0)+ % a?F"(0)+ & a3F”(0) +--- ,
ceptibility matrix (10)

Xij = {(SiSi)p—{(Si)p(Si)p (5  whereF'(a)=dF/da, F"(a)=d*Flda?, and so on. This
expansion is called the Plefka expansion. Note that the de-
and the stability matrix rivatives with respect tar should be taken withm; fixed.
) SinceH(a=1) is the original Hamiltoniari1) to be consid-
A — J°F ©) ered, settinge=1 in Eqg. (10) yields, leaving the conver-
U amom, gence problem aside, the true Gibbs free energy, F.6)
=F(1).
are the inverse of the others; that is, the following identity The coefficients of the Plefka expansion up to third order
holds: are given as follow$14].
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Moreover, they are not necessarily unique, as extensively
) studied in spin glass literatufé5s].
The linear response theorem provides a practical basis for
1-m, the linear responseorrection[4], which gives an approxi-
+(1_mi)|n( 5 ”—E him;,  (11)  mate estimate of the correlatiois;s;), in the mean-field
' approximation. Using the solutidm;} of the self-consistent
equations, the approximated stability matrix

1 1+mi
FO)=52 5

(1+mi)ln(

F'(0)=—> w;mm;, (12) 2
(ij) (n)_ I°Fq (17)
1 &m,&m]

F"(0)=—> wi(1—m?)(1—m?), 13
©) <|2,> il i i) (A3 is evaluated in terms of the already known quantitigsand

w;; . For exampIeAi(jl) is given by

F"(0)= —4(2_> wi mim;(1—m?)(1—-m?) 1
ij (1) _
Aij —1_mi25ij W” (18)
—6 2, Wy Wiy (1—m?)(1—m?)(1—mp). o , _
(ijk) wj; for i=j is undefined, and should be regarded as 0 at this
(14) point. Although the linear response theorem no longer holds
- _ exactly since A{") is not exact, one can expect that it stil
In the above,(ijk) means that the summation should bepqids approximately. Thus invertingAKj“)) yields the ap-

Lﬂ(r?sr;o(r)]\lﬁg ?(IJI ?rii[itrrzcz):criigletfr.m&;r:rc.ju?tftztiitrir;?jge Olz;:gftznex' proximated susceptibility matrixy["). Then, using relation
obtain thenth-order approximatioff, of the Gibbs free en- 52)8 ng:seTUbS;i;gtiré%ﬁjn)cirrf rSitein :rl'(?:srgfe)g ijeasrt]i?rizitép 'of
ergy F. Note thatF, is identical to the Weiss free energy, b Y . P T

. . Wi > (SiSj)p . This constitutes the linear response correction in the
andF, is the TAP free energy for Sherrington-Kirkpatrick nth-order mean-field approximation
(SK) models: For the case of Boltzmann machines with finite So far, under the condition thif andw;; of a Boltzmann

N, one cannot expect in general that higher-order terms van- hinen are all known. one can estimats), and(s;s,)
ish, andF,, is indeed an approximation &f. P ' 8/p i9j/p

from the self-consistent equations and the linear response
correction of nth-order mean-field approximation, respec-
tively, in the way described above, which defines a method
1. Forward problem of solving the forward problem approximately. | will call the
method thenth-order method for the forward problem.

C. Mean-field approximation

From thenth-order approximation of the Gibbs free en-
ergy, one can construct theth-order method of mean-field
approximation. In this subsection | describe the methods of
several orders for the forward problems. In Sec. Il C 2 | will ~ For Boltzmann machines without hidden units, one can
discuss the methods for the backward problems. solve the backward problem directly by using the mean-field

As described above, minimization of the Gibbs free en-approximation, without referring to the error feedback
ergy F with respect tam; gives the true value afy;. Using ~ scheme(3) employed in the ordinary Boltzmann machine
the nth-order approximatiof , in place ofF, one can obtain l€arning. Assume thas;), and(s;s;), are all known. Then
annth-order estimate af; by minimizingF,, with respect to  the susceptibility matrix x;;) is computed exactly using Eq.
m; . This minimization problem can be solved by considering(5). Inverting it yields the(exac} stability matrix (A;;). On
the stationary conditions/F,/dm;=0, i=1,...N. These the other hand, the stability matrix has under tite-order
conditions constitute the self-consistent equations of thénean-field approximation an analytic expression derived

nth-order mean-field approximation. For example, wiren from Eq. (17), which is a function ofm;=(s;), andw;;.
=1, the conditions are Equating them gives the simultaneous equations from which

wj;’s are to be determined, sinog=(s;), are assumed to be
1 known. Oncew;;’s are obtained, one can evaludtgusing
tanh™* m;—h;— IEI wi;m; =0, (19 the self-consistent equations of thth-order approximation.
The procedure described above constitutes rieorder
which are those of Weiss mean-field theory. Rer2 these ~method for solving the backward problem.
give the TAP equations for SK models: It should be noted that, although evaluationhgt is an
appropriately defined problem—since the number of vari-
_q 2 o ablesh; to be determinedN, is equal to the number of the
tanh mi_hi_;i Wijmﬁquﬁi wij(1—mj)m;=0. self-consistent equations—evaluationvef’s bears a prob-
(16)  lem of overdetermination because the number of variables
w;; to be determined i8l(N—1)/2, whereas the number of
Self-consistent equations for still higher orders can be obindependent equalities of Eq7) is N(N+1)/2 including
tained in the same way. BecauBg is an approximation of those for the diagonals, since the susceptibility and stability
F, solutionsm; of the stationary conditions are not exact. matrices are symmetric. These equations should be simulta-

2. Backward problem
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neously satisfied by the trug;’s in the exacttheory, where _ 2 s 2
m;’s are also true, but impproximatetheory it is no longer Wi = _j;&i (wij)“(1—mj)
expected for them to hold simultaneously. There may be sev-

eral choices for dealing with the overdetermination, both for 3 5
the forward and backward problems. KR] employed a _4; (wij)“mym;(1—my)
heuristics of using theN(N—1)/2 equations on the off-
diagonals of thesusceptibilitymatrix for both of the prob-
lems. The heuristics of KR has a merit of consistency in that,
given a Boltzmann machinp, when one solves the back-
ward problem using a solution of the forward problem with .
one obtains a result which is identical with Even though
the consistency property is the preferable one, an argume

—2<%> Wi Wi Wik (1= m?) (1—mg). (21
il

e notation(i|jk) means that the summation should be
taken over all distinct triplets with fixed. The first term

: %bmes from the second-order term of the Gibbs free energy,
of how these choices affect the degree of accuracy of thﬁnd the remaining two terms from the third-order term. It

approximation will be very intricate. Therefore, | leave the ¢;\011d be noted that the;; Wi W, terms are expected to be
problem of how to cope with the overdetermination beyondy,minant among the third-order terms, since the number of
the scope of this paper. such terms i©(N?), whereas the number ofi;)* terms is
IV. DIAGONAL-WEIGHT TRICK O(N). The diagonal termv;;m; can be written as

Within the framework presented in this paper, the KR 1
method can be regarded as a variant of the first-order wiim=——— | 5F"(0)+ gF"(0)
method, since it is based on the Weiss free enérgy Nu- '
merical experimentf4] reveal, however, that it performs far 2 3 ) ’
better than the first-order method described above. The dif- 3 Z«I (Wi))*(1+3mA)m;(1—mp). (22
ference between KR and first-order methods is that KR sug- .

gested using "diagonal weightsit; , which are to be de- Therefore, the self-consistent equati@d) with the diagonal

fined by term eventually takes into account the second-order term
1 3(9F"(0)/gm;) as a whole, and the dominant part of the
Ai =12~ Wi (19 third-order termi(gF"(0)/om,):
1

This equation can be regarded as a naive application of Eq. .
(18) to the diagonal$=j, without regardingy;; to be zero. tanh mi_hi_z Wi;m;
The self-consistent equatiddb) is rewritten accordingly as '

J
tanh * mi—hi—; w;jm; =0, (20 :a_miFl_Wiimi
. . . d 2
where the summation now includes the diagonal tefm; . = —Fz+= E (Wij)3(1+3mi2)mj(1_ mjz)_ 23)
An obvious merit of this “diagonal-weight trick™ is that it am; 317

practically resolves the overdetermination problem discussed
in Sec. lll C 2, because the number of variables to be deterfhis shows that, if the second-order approximation of the
mined is nowN(N+1)/2, which is equal to the number of free energy is exact, the first-order method with the diagonal-
independent equations. Thus one can simply takeNfi¢  weight trick and the second-order method without it will give
+1)/2 equations for the elements of the stability matrix inthe same results. Even if the third-order term of the free
order to determind(N+1)/2 variablesw;; . The most im-  energy cannot be neglected, the dominant part is incorpo-
portant advantage of the diagonal-weight trick is, howeverrated by the diagonal term, and one can expect that the result
that it is what enables the KR method to perform substanwill not be so different from the result of the third-order
tially better than the first-order method, as shown in thismethod without the trick, if the part incorporated by the di-
section. agonal term is indeed dominant.

| present an explanation of the diagonal-weight trick on It is possible to extend the argument to still higher orders.
the basis of the third-order theory. In the third-order approxi-in the nth-order coefficienf("(0), n=3, of the Plefka ex-
mation the diagonal weights;; determined by the trickl9) pansion(10), the part which is dominant in the number of
are given by terms[O(N")] is given by[14]

- iE | >wilizwi2i3~--winilu—mﬁ)(l—mi)-~<1—m?n>. (24)
120200 n

The dominant part contributes to the self-consistent equations by the terms
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1 gFM(0)
~ W W (1=m2 ) (1—m2 Ym:
m &—miwz(i\i;.,in) W||2W|2|3 Wlnl(l m|2) (1 mln)ml ) (25)
|

and to the diagonal weight;; by order of expansion as well as the magnitudewgfs in a
2e(n) quite complicated manner. One can expect, for sufficiently
19 FM(0) small w;;’s, that higher-order methods give better results.
n! ﬁmiz However, whemw;;’s are large, higher-order methods may

give erroneous results. | compared the accuracy of the meth-

ods for various orders using computer simulations, not to

propose novel efficient algorithms, but to gain insight into

how each of the methods will perform under certain condi-
(26 fions.

It is evident in these expressions that the latter, as a compo- We restrict ourselves to cases where there are no hidden

nent of the diagonal weight, exactly cancels out the former ifnits. As already mentioned, in such cases one can directly

the self-consistent equation. Therefore, it has been shovv?PIVe the "backward” problem of estimating the parameters

that the diagonal terw;;m. in the self-consistent equation Ni andwi; from the expectationts;),, and(s;s;),, which are

effectively cancels out the dominant parts coming from theassumed to be observed exactly. We also focus on the cases

nth-order terms §=2) of the Plefka expansion where the number of unifd is small, in order to evaluate the

The above discussion shows that the KR method exhibit&ccuracy of re§ults gxplicitly by means .Of Kullback iner-
a performance superior to the conventional first-ordede"NCE: In the simulations the target distributiofs), defin-

method because it effectively incorporates higher-order conlNd (Si)p @nd(s;s;),, was assumed to be given by another
tributions via the diagonal-weight trick. It is possible to com- Boltzmann machine, whose parameterandw;; were cho-
bine the trick with the second- or third-order method, bySE€n as independent random variables fozllowmg a Gaussian
eliminating from the self-consistent equations the terms aldistribution with mean.=0 and variancer*.

ready incorporated by the diagonal term. The self-consistent

equation of the second-order method with the diagonal- A. Description of algorithms

weight trick is the same as E@0), that of the first-order In this subsection | summarize the actual procedures
method with the trick, because the entire second-order conphiementing the methods used in the simulations. Since the
tribution to the self-consistent equation has already been insijations treat the backward problems, the algorithms ba-

corporated by the diagonal term. Similarly, the self-qicqyy follow the description in Sec. Il C 2. An important
consistent equation of the third-order method with the trick isgg e is the way to resolve the overdetermination.

given explicitly by the simple formula

~-2 > Wi Wi i Wi (1=mp)-+(1=m?).

In
this paper | employ the simplest heuristics to use the
N(N—1)/2 equations on the off-diagonal elements of the
tanh ! mi—hi—Ej: wi;m;(1+c¢;;)=0, (27)  stability matrix:

P?F,
i &mi&mj

wherec;; =0, A (i#]). (29

_2 2 2 2
Cij =3 (Wij) “(1+3m7) (1~ mj) (28) The algorithms of the methods without the diagonal-
weight trick are summarized as follows:

Use of the diagonal-weight trick is especially advanta- (1) Compute the suscgptlb|llty matrixc) from the ob-
geous for solving the backward problems, because it save%ervm(si)P "’_md<5isj>l? using Eq.(5). . .
the amount of computation to a considerable extent. For the (2) Invert it to o,btaln thelexac) stability matrix (;;).
forward problems, however, the diagonal weigits should (3) Computew;;'s by solving Eq.(29) with m;=(s;),.
be determined so that the diagonal terg{® of the approxi- (4) Computeh;’s by substitutingm; andw; into the self-
mated susceptibility matrix are equal to—?, which consistent equations.

oF : . I Equation(29) reads, for the first-order method,

would require iterative computation and does not seem prac-

fori#j, andw;; is determined by Eq19).

tical. AI] = _Wij X (30)
SIMULATIONS
A= — Wi — 2(wyj) 2mym; ; (31

Thus far, a family of mean-field-theory-based methods of
various orders has been obtained systematically from the .
Plefka expansion. It is then important to compare the perforand, for the third-order method,
mance of these methods. Since the Plefka expansion is es-
sentially a Taylor expansion, the accuracy depends on the Ajj= = wij — 2(w;j) *mymy
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- E(w--)3(1—3m.2)(1—3m?1)
3 ' ! Oth order

. 107 1st order
- 4k;j Wij Wi Wiy m; (1 —my), (32) i 2nd order
3rd order

T
o o

=]

all for i#j. For the first- and second-order methods, Eqgs. 4
(30) or (31) can be solved independently for eaet) . For Q
the third-order method, however, E@2) should be solved ~
simultaneously. In the following simulations this was done
by the gradient-descent method on the squared residual error.
Another practical difficulty is that Eq931) and (32) are
nonlinear, and may have more than one solution. Consider-
ing the origin of these equations that have been obtained
from Taylor expansion, one can expect continuity of the so-
lution as higher-order effects are gradually increased from
zero, provided that the approximation based on the expan- 0.01 0.1 1 10
sion is valid. Based on the continuity property one can pick 0-02
up the relevant solution. In the following simulations, for the
second-order method this was done analytica”y. For the FIG. 1. Average Kullback divergenc®> between the ran-
third-order method it was done numerically, pursuing thedomly generated targets and the Boltzmann machines determined
solution while increasing the magnitude of the third-orderby a mean-field approximation of several orders without the
terms. In fact this approach requires a considerable amoumiagonal-weight trick, varj=(N—1)o?. Results forN=3, 5, 9,
of computation and hence is less practical, but it is expectednd 17 andr=0.05, 0.1, 0.2, 0.3, 0.5, and 0.8 are shown. The full
to retain the reliability of the obtained solution. Of course, inlines connecting markers show that the markers are the results for
view of the amount of computation there may be other apthe same value of. The dashed lines indicate that the markers are
proaches. the results of the third-order method when the averages are taken
Self-consistent equations for the first- and second-ordepver “reliable” trials only.

methods are given by Egél5) and (16), respectively. The o
self-consistent equation for the third-order method is The approaches taken to resolve the overdetermination and

the multiple solutions are the same as those employed in the
methods without the diagonal-weight trick.

107 ; =

tanh_l mi—hi—;i lemj'f‘; Wﬁ(l_mjz)ml
B. Results and discussion

N

-5 2 (Wij)3(1_3mi2)mj(1_ mjz) 1. Methods without diagonal-weight trick
J#i In the first set of simulations | compared the accuracy of
the zeroth-, first-, second-, and third-order methods without
+2 E WijWiijkmi(l—mjz)(l—mﬁ)=0- the diagonal-weight trick. The Kullback divergente be-
(ilik) tween the target and the result given by each of the methods
was measured, and the averadPs of 200 trials were plot-
ted in Fig. 1. The horizontal axis is scaled with the normal-

H H 2__
Using only the zeroth-order term of the Plefka expansionizeéd Va”a“CﬂTo=(N_—1)02- _
along with the Zeeman energy term, gives a method which | For small o, higher-order methods had consistently

(33

call the zeroth-order method. It is defined as lower average divergences, and thus the third-order method
gave the best results among all the methods investigated.
hj=tanh ' m; w;;=0. (34  This indicates that the inclusion of higher-order terms cer-

tainly improved the accuracy in such cases. On the other
The algorithms of the methods with the diagonal-weighthand, for largero the third-order method became numeri-

trick are defined as follows: cally rather unstable and sometimes gave results with erro-
(1) Compute the susceptibility matrixy(;) from the ob-  neously large divergences, which make the averaged diver-
served(s;), and(s;s;), using Eq.(5). gence(D) large. For still largers the second- and first-
(2) Invert it to obtain the(exac) stability matrix (A;;). order methods also showed similar behaviors. The erroneous
(3) Computew;;’s by solving Eq.(29) for i#j, and Eq.  behavior is not hard to detect for each trial since it appears
(19) for i=j, with m=(s;)p. rather drastically. | investigated this behavior in more detail
(4) Computeh;’s by substitutingm; andw;; into the self- for the third-order method, since it showed the behavior most
consistent equations. evidently. For measuring to what extent a result given by the

The self-consistent equations for the first- and secondthird-order method is unreliable, | used the rag/D, of
order methods are both given by Eg0). For the third-order the two divergenceB ;=D (pzdlp) andD,=D(p,ndIp) for
method | used Eq(27) to supplement the terms which are a targetp, the former being the one between the taggeind
not taken into account by the diagonal tefsee Eq.(23)].  the resultpsq given by the third-order method, and the latter
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L R L L ~1 as expected by spin glass theory, and it is observed that
B i the slope becomes steeperMsncreases, suggesting that it
reflects the phase transition phenomenon.

It can be stated that the effectiveness of the methods
R i based on mean-field theory for Boltzmann machine learning
is affected by the phase transition phenomenon. It should be
noted that, as for Boltzmann machine learning, the relevant
gquantities are not the time averages but the Gibbs averages.
Once all the parametetg andw;; are given, the Gibbs av-
erages are in principle completely determined by these pa-
L PO ol T T T i A rameters, and thus the correct solution fam} should be
0.01 1 100 104 108 1081010101210141016 unique. Therefore, when the self-consistent equation has

D5/D, many solutions, elaborating any one of these solutions is of

use for evaluating the time averages, but will be of little use
for evaluating the Gibbs averages, which are the relevant
quantities. The methods based on mean-field theory work
well in the “paramagnetic” regior(i.e., all w;; 's are rela-
between the targqt and the resulp,,q given by the second- tively small and the solution of the self-consistent equations
order method. As an example, Fig. 2 shows a histogram df Uniqué and higher-order methods give more accurate re-
the ratioD4/D,, for the case wherél=12 ande=0.4. In  Sults, whereas, in the “spin glass” region beyond the phase
the following, a heuristic criterion, that trials with a ratio fransition point(w;;’s are large, methods based on mean-
D4/D, greater than 100 are judged as unreliable, was usefi€ld theory can provide many spurious results. In such con-
throughout. Shown in Fig. 1 by dashed lines are the diverditions even the first-order method becomes rather unstable

gences averaged over trials which were judged as reliab/@nd gives erroneous results, while the simple zeroth-order
with the criterion above. method seems to be robust against the instability, as indi-
2 .
This instability of the higher-order methods can be ex-cated by the large part of Fig. 1. It should be noted, from
plained in terms of the phase transition in spin glass theory Practical viewpoint, that the “spin glass” phase limits the
The condition for phase transition into the spin glass phasésefulness not only of mean-field-theory-based methods but

can be expressed ag=1 for the SK model ;=0). When  also of the direct method using the Gibbs sampler to solve
2 s larger than this point, it is known that the self- the “forward” problem. The Gibbs sampler evaluates the

0-0 . - . . .
consistent equation for the SK model develops many solylime averages for estimating the Gibbs averages by simulat-

tions. In the spin glass phase the free energy has a so-calld the physical process, and it will, as is the case with real
many-valley structure, and each valley is separated fron3Pin glasses, become trapped in one of the valleys for a con-
other valleys by barriers of infinite height. Some of the so-Siderably long time, which will prevent it from correctly es-
lutions of the self-consistent equation are expected to corrdiMating the Gibbs averages from the time averages.

spond to such valleys, and when the state is trapped within
one of the valleys the time average of spin variables will be
given by one such solution. Intuitively speaking, the phase In order to investigate how the diagonal-weight trick af-
transition phenomenon, or bifurcation of solutions, also ocfects accuracy, | executed another set of simulations with
curs in Boltzmann machines, and results in the observed efethods employing the diagonal-weight trick. The sets of
roneous behavior of higher-order methods. Figure 3 shows trgets used in these simulations were the same as those in
result which supports this explanation. It shows how the propreviously described simulations without the trick. The re-
portion of reliable trials depends o for the third-order ~Sults, obtained as average Kullback divergent@s, are

method. The proportion decreases from 1 to 0 arougd summarize(zj in Fig. 4. _ .
When o is small, the third-order method with the

diagonal-weight trick marks the best performance on aver-
age. The first- and second-order methods showed almost the
same performance, and thus these two methods are hard to
distinguish on the figure. The performance of these two
methods was also almost the same as that of the second-order
methodwithout the diagonal-weight trick, as shown in Fig.
5. These observations show that the first-order method with
the diagonal-weight trick performs as good as the second-
order methods owing to the trick, which means that the trick
is quite effective in such conditions. It is also consistent, up
to second order, with the analytical argument on the trick
presented in Sec. IV. The self-consistent equations for these
three method$Eqgs. (16) and (20)] are effectively identical

FIG. 3. Proportion of “reliable” trials to total trials for the up to the second order. The second-order term is identical to
third-order method. The number of total trials are 500, 200, and 106he Onsager reaction term of SK models. As is well known
for N=6, 12, and 18, respectively. in spin glass theory, this cannot be neglected in considering

Relative Frequency

FIG. 2. Histogram of the rati® /D, for the casedN=12 and
o=0.4. Results of 1000 trials are shown.
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FIG. 6. Average Kullback divergence of the first- and second-
order methods with and without the diagonal-weight trick. The
meanu of the parameters; is set to 0.8. Results fal=3, 5, 9,
and 17 andr=0.05 and 0.1 are shown.

such randomly frustrated systems, and its inclusion in the

simulations certainly improved the accuracy, as expectedonger small, whilew;;’s remain small as before. The results
The equations giving the linear response correction are difare summarized in Fig. 6. The first-order method with the
ferent for these method€gs. (30) and (31)] in the second-  trick showed a_slightly bet.ter performance tha|_1 the first-
order term—2(w;;)2m;m;, but this seems to have little ef- order method without the trick, implying that the incorpora-
fect on the results in this case. tion of the diagonal weight has an effect of improving accu-

One may suppose that the second-order terniacy again in this case. However, its performance was
—2(Wij)2mi m; has little effect whemg is small because in considerably worse than the secor21d—order megthods. It shows
such casem’s are close to zero, and therefore this secondihat the second-ord,er tem“'z("",ij) m;m; certainly affects
order term becomes vanishingly small compared with. the accuracy wheh;’s (hencem;’s) are not close to zero.

To investigate this, still another set of simulations was ex- When considering up to the third order, it seems that these
ecuted, in which the parametens of the target distribution _results do not correspond to the.ane}lytlcal argument. Accqrd-
p(s) were chosen as independent Gaussian random variabl&g to the argument, the effective incorporation of “domi-

with variancec? and mearw=0.8 instead of 0. This setup nant parts” of the third-order contribution via the diagonal
allows us to check the effect ah’s. which are now no t€rm, if it works as anticipated, will have the second-order
1 il

method with the diagonal-weight trick outperform the
second-order method without the trick, and lie closer to the
third-order method without the trick. The results in Figs. 1

FIG. 4. Average Kullback divergence of methods of several
orders with the diagonal-weight trick. Results f# 3, 5, 9, and 17
ando=0.05, 0.1, 0.2, 0.3, 0.5, and 0.8 are shown.

L | o 1stw/odw . and 5 showed that the former two methods were almost the
10'3 —| & 1stw.dw = same in performance, whereas the latter outperformed these
" | & 2nd w/o dw ] two. This means that the effective incorporation of dominant
s . parts by the diagonal term did not work efficiently in those
107} 2nd w. dw . situations investigated in these simulations, which would ar-
~ 7 guably be due to small. For the case where's are biased
\Q/ . with ©=0.8, the second-order method without the trick
10° — showed better performance than the second-order method

§ with the trick whena?3 is small. In fact, the performance of
. the former was almost equal to the performance of the third-
- order method without the trick. From these results it should
] be stated that the effectiveness of the diagonal-weight trick
. varies between cases. As far as | investigated, it was ob-
— served as a general trend that the trick improved accuracy
' ' with hy’s smaller compared withw;;’s, whereas it gave
0.01 0-02 0.1 worse results than without it wheam’'s were larger.
When ag becomes large, instability appears just as it does
FIG. 5. Average Kullback divergence of the first- and second-for methods without the diagonal-weight trick. It was ob-
order methods with and without the diagonal-weight trick. Resultsserved that higher-order methods are more sensitive, and that
for N=3, 5, 9, and 17 and=0.05 and 0.1 are shown. employing the diagonal-weight trick makes them somewhat
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less sensitive than without it, but these tendencies are not sffectiveness of the methods based on mean-field theory for
apparent in the figure. In the region wherg>1 the zeroth-  Boltzmann machine learning, as well as the direct method

order method was the best among all the methods investlsing the Gibbs sampler.

gated. This again supports the argument presented above When the parameters are small, the first-order method
that, in such cases, higher-order treatments intended to giwgith the diagonal-weight trick has shown a performance as

more precision are actually not effective and give erroneougood as the second-order methods, which supports the effec-
results, and that the simplest zeroth-order method seems ttyeness of the KR method and the trick in such conditions.

be robust against the instability. However, the effectiveness of the trick in general varies be-
tween cases, as was shown by computer simulations.
VI. CONCLUSION In this paper we have left aside the issue of computational

-~ _ complexity. Whenw;;’s are small the higher-order methods

| have presented a unified theory of the mean-field Bolt-yive better results, but at the expense of increasing compu-
zmann machine learning based on TAP free energy formalation time. As mentioned by KIR4], the computation time
ism and incorporating the linear response theorem in a conequired for the KR method i©(N3) because it includes
sistent way. By utilizing the Plefka expansion, an extendeqnyersion of a matrix of siz&l. This is the same order as that
theory including higher-order terms has been discussed, frof the second-order method. However, the third-order
which a mean-field approximation of general orders is demethod is computationally much heavier because it has to
rived by truncating the Plefka expansion up to desired orincorporate an iterative calculation for solving nonlinear si-
ders. Based on the framework, a theoretical foundation of dhultaneous equations_ For practica| app”cations it seems
effective trick of using diagonal weights, introduced by Kap-that appropriate algorithms and/or approximation schemes
pen and Rodguez, has been also given. are necessary, and we expect that the theory presented in this

Computer simulations for comparing the accuracy of thepaper will be useful in deriving such schemes.
methods of various orders have shown that higher-order

methods give better results when the parameterand w;;

of the target are small. On the other hand, when the param-
eters are large, higher-order methods exhibit instability and
may give erroneous results, while the simplest zeroth-order | would like to thank Dr. Masato Okada for drawing my
method is robust against such instability and gives the besdttention to the work by Kappen and Raglrez, and Dr.
results. These observations have been explained in terms Bazuo Nakanishi for pointing out an error in a previous ver-
the spin glass phase transition, and this seems to limit thsion of the paper.
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